Skip to main content
Version: v0.10.x

On Managed Kubernetes

Try OpenChoreo on managed Kubernetes services (GKE, EKS, AKS, etc.) with automatic TLS certificates. This guide uses nip.io for free wildcard DNS based on your LoadBalancer IP.

What you'll get:

  • OpenChoreo with real TLS certificates (Let's Encrypt)
  • Single cluster deployment
  • Access via *.nip.io domains
  • ~30 minutes to complete

Prerequisites​

  • Kubernetes 1.32+ cluster with at least 3 nodes (4 CPU, 8GB RAM each)
  • LoadBalancer support (cloud provider or MetalLB)
  • Public IP accessible from the internet (for Let's Encrypt HTTP-01 validation)
  • kubectl v1.32+ configured to access your cluster
  • Helm v3.12+
  • cert-manager installed in your cluster
kubectl version
helm version --short
kubectl get nodes
kubectl auth can-i '*' '*' --all-namespaces
Install cert-manager with Gateway API support

Install Gateway API CRDs (required for cert-manager to issue certificates via Gateway):

kubectl apply -f "https://github.com/kubernetes-sigs/gateway-api/releases/download/v1.2.0/standard-install.yaml"

Install cert-manager with Gateway API support enabled:

helm upgrade --install cert-manager oci://quay.io/jetstack/charts/cert-manager \
--namespace cert-manager \
--create-namespace \
--set crds.enabled=true \
--set config.apiVersion="controller.config.cert-manager.io/v1alpha1" \
--set config.kind="ControllerConfiguration" \
--set config.enableGatewayAPI=true

Wait for cert-manager to be ready:

kubectl wait --for=condition=available deployment/cert-manager -n cert-manager --timeout=120s

Step 1: Setup Control Plane​

helm upgrade --install openchoreo-control-plane oci://ghcr.io/openchoreo/helm-charts/openchoreo-control-plane \
--version 0.10.0 \
--namespace openchoreo-control-plane \
--create-namespace \
--set global.baseDomain=placeholder.nip.io \
--set thunder.configuration.server.publicUrl=http://thunder.openchoreo.placeholder.nip.io \
--set thunder.configuration.gateClient.hostname=thunder.openchoreo.placeholder.nip.io

This does an initial deployment with placeholder values. We'll update it with the real domain once we know the LoadBalancer IP.

This installs:

  • controller-manager: the controllers that reconcile OpenChoreo resources and manage the platform lifecycle.
  • openchoreo-api: REST API server that the console and CLI talk to.
  • backstage: the web console for managing your platform.
  • thunder: built-in identity provider handling authentication and OAuth flows.
  • cluster-gateway: accepts WebSocket connections from cluster-agents in remote planes.
  • kgateway: gateway controller for routing external traffic to services.
  • OpenChoreo CRDs: Organization, Project, Component, Environment, DataPlane, BuildPlane, and others that define the platform's API.

The control plane is OpenChoreo's brain. In production, you'd typically run this in its own dedicated cluster, isolated from your workloads.

For all available configuration options, see the Control Plane Helm Reference.

Get LoadBalancer IP

Wait for LoadBalancer to get an external IP (press Ctrl+C once EXTERNAL-IP appears):

kubectl get svc gateway-default -n openchoreo-control-plane -w

Get the IP address:

CP_LB_IP=$(kubectl get svc gateway-default -n openchoreo-control-plane -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

Configure Domain and TLS

Set domain variable (converts IP to nip.io format):

export CP_DOMAIN="openchoreo.${CP_LB_IP//./-}.nip.io"
echo "Control Plane Domain: $CP_DOMAIN"

Create Issuer and Certificate:

kubectl apply -f - <<EOF
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: letsencrypt-http01
namespace: openchoreo-control-plane
spec:
acme:
server: https://acme-v02.api.letsencrypt.org/directory
email: tryout@openchoreo.dev
privateKeySecretRef:
name: letsencrypt-http01
solvers:
- http01:
gatewayHTTPRoute:
parentRefs:
- name: gateway-default
namespace: openchoreo-control-plane
---
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: control-plane-tls
namespace: openchoreo-control-plane
spec:
secretName: control-plane-tls
issuerRef:
name: letsencrypt-http01
kind: Issuer
dnsNames:
- "${CP_DOMAIN}"
- "api.${CP_DOMAIN}"
- "thunder.${CP_DOMAIN}"
EOF

This creates a Let's Encrypt issuer using HTTP-01 validation. The Certificate resource requests certificates for the console, API, and Thunder (identity provider) domains. Let's Encrypt will make HTTP requests to these domains to verify you control them, which is why your LoadBalancer needs to be publicly accessible.

Wait until READY shows True (may take 1-2 minutes):

kubectl get certificate control-plane-tls -n openchoreo-control-plane -w

Upgrade with TLS

helm upgrade --install openchoreo-control-plane oci://ghcr.io/openchoreo/helm-charts/openchoreo-control-plane \
--version 0.10.0 \
--namespace openchoreo-control-plane \
--reuse-values \
--set global.baseDomain=${CP_DOMAIN} \
--set global.tls.enabled=true \
--set global.tls.secretName=control-plane-tls \
--set thunder.configuration.server.publicUrl=https://thunder.${CP_DOMAIN} \
--set thunder.configuration.gateClient.hostname=thunder.${CP_DOMAIN} \
--set thunder.configuration.gateClient.port=443 \
--set thunder.configuration.gateClient.scheme="https"

This upgrades the control plane with these settings:

  • global.baseDomain: the real nip.io domain based on your LoadBalancer IP.
  • global.tls.enabled and global.tls.secretName: enables TLS using the certificate we just created.
  • thunder.configuration.*: updates Thunder to use HTTPS on port 443.

Step 2: Setup Data Plane​

helm upgrade --install openchoreo-data-plane oci://ghcr.io/openchoreo/helm-charts/openchoreo-data-plane \
--version 0.10.0 \
--namespace openchoreo-data-plane \
--set gateway.httpPort=19080 \
--set gateway.httpsPort=19443 \
--create-namespace

This installs the data plane into the openchoreo-data-plane namespace, with these settings:

  • gateway.httpPort and gateway.httpsPort: the ports where KGateway listens for traffic to your applications.

This installs:

  • cluster-agent: maintains a WebSocket connection to the control plane's cluster-gateway. This is how the control plane sends deployment instructions to the data plane.
  • gateway: KGateway with Envoy proxy that routes incoming traffic to your deployed applications.
  • fluent-bit: collects logs from your workloads and forwards them to the observability plane.
  • Gateway API CRDs: Gateway, HTTPRoute, and other resources for traffic routing.

The data plane is where your workloads actually run. In this guide we're installing it in the same cluster as the control plane, but in production you'd typically have it in a completely separate cluster. This separation is intentional: your application code never runs alongside the control plane, and the control plane's credentials are never exposed to your workloads.

For all available configuration options, see the Data Plane Helm Reference.

Get Gateway LoadBalancer IP

Wait for LoadBalancer to get an external IP (press Ctrl+C once EXTERNAL-IP appears):

kubectl get svc gateway-default -n openchoreo-data-plane -w

Get the IP address:

DP_LB_IP=$(kubectl get svc gateway-default -n openchoreo-data-plane -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

Configure Domain

export DP_DOMAIN="apps.openchoreo.${DP_LB_IP//./-}.nip.io"
echo "Data Plane Domain: $DP_DOMAIN"

Configure TLS

kubectl apply -f - <<EOF
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: openchoreo-gateway-tls
namespace: openchoreo-data-plane
spec:
secretName: openchoreo-gateway-tls
issuerRef:
name: openchoreo-selfsigned-issuer
kind: ClusterIssuer
dnsNames:
- "${DP_DOMAIN}"
EOF
Wildcard Certificates

The data plane gateway requires a wildcard hostname (*.apps.openchoreo...nip.io) since each deployed component gets its own subdomain. HTTP-01 validation cannot issue wildcard certificates, so we use a self-signed certificate here. For production with trusted certificates, configure DNS-01 validation with your DNS provider.

Upgrade with Domain

helm upgrade --install openchoreo-data-plane oci://ghcr.io/openchoreo/helm-charts/openchoreo-data-plane \
--version 0.10.0 \
--namespace openchoreo-data-plane \
--reuse-values \
--set gateway.tls.hostname=${DP_DOMAIN}

Register with the Control Plane

CA_CERT=$(kubectl get secret cluster-agent-tls -n openchoreo-data-plane -o jsonpath='{.data.ca\.crt}' | base64 -d)

The control plane only accepts agent connections signed by a CA it recognizes. When you installed the data plane, cert-manager generated a CA and used it to sign the cluster-agent's client certificate. This command extracts that CA so you can tell the control plane about it.

kubectl apply -f - <<EOF
apiVersion: openchoreo.dev/v1alpha1
kind: DataPlane
metadata:
name: default
namespace: default
spec:
planeID: "default-dataplane"
clusterAgent:
clientCA:
value: |
$(echo "$CA_CERT" | sed 's/^/ /')
gateway:
organizationVirtualHost: "openchoreoapis.internal"
publicVirtualHost: "${DP_DOMAIN}"
secretStoreRef:
name: default
EOF

This creates a DataPlane resource that tells the control plane about your data plane, with these settings:

  • planeID: identifies this data plane. Must match what the cluster-agent was configured with, which defaults to default-dataplane.
  • clusterAgent.clientCA: the CA certificate that signed the agent's client certificate. The control plane uses this to verify incoming connections.
  • gateway.publicVirtualHost: where your deployed applications become accessible.
  • secretStoreRef: references the External Secrets ClusterSecretStore for managing secrets.

Verify

kubectl get dataplane -n default

The cluster-agent should now be connected. You can check its logs:

kubectl logs -n openchoreo-data-plane -l app=cluster-agent --tail=10

Step 3: Setup Build Plane (Optional)​

The Build Plane enables OpenChoreo's built-in CI capabilities. It runs Argo Workflows and hosts a container registry for your built images.

Create Namespace

kubectl create namespace openchoreo-build-plane --dry-run=client -o yaml | kubectl apply -f -

Configure TLS

kubectl apply -f - <<EOF
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: letsencrypt-http01
namespace: openchoreo-build-plane
spec:
acme:
server: https://acme-v02.api.letsencrypt.org/directory
email: tryout@openchoreo.dev
privateKeySecretRef:
name: letsencrypt-http01
solvers:
- http01:
gatewayHTTPRoute:
parentRefs:
- name: gateway-default
namespace: openchoreo-control-plane
---
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: registry-tls
namespace: openchoreo-build-plane
spec:
secretName: registry-tls
issuerRef:
name: letsencrypt-http01
kind: Issuer
dnsNames:
- "registry.${CP_DOMAIN}"
EOF

Wait for certificate:

kubectl get certificate registry-tls -n openchoreo-build-plane -w

Install

helm upgrade --install openchoreo-build-plane oci://ghcr.io/openchoreo/helm-charts/openchoreo-build-plane \
--version 0.10.0 \
--namespace openchoreo-build-plane \
--create-namespace \
--set clusterAgent.enabled=true \
--set global.baseDomain=${CP_DOMAIN} \
--set global.tls.enabled=true \
--set global.tls.secretName=registry-tls \
--set external-secrets.enabled=false

This installs the build plane with these settings:

  • global.baseDomain: used to construct the registry URL at registry.<baseDomain>.
  • global.tls.enabled and global.tls.secretName: enables TLS for the registry using the Let's Encrypt certificate.
  • clusterAgent.enabled: enables the cluster-agent for communication with the control plane.

This installs:

  • cluster-agent: connects to the control plane to receive build instructions.
  • argo-workflows: executes the actual build pipelines as Kubernetes workflows.
  • registry: a container registry that stores your built images.
  • Argo Workflows CRDs: Workflow, WorkflowTemplate, and other resources for defining build pipelines.

Like the data plane, the build plane could run in a completely separate cluster if you wanted to isolate your CI workloads.

For all available configuration options, see the Build Plane Helm Reference.

Register with the Control Plane

BP_CA_CERT=$(kubectl get secret cluster-agent-tls -n openchoreo-build-plane -o jsonpath='{.data.ca\.crt}' | base64 -d)

kubectl apply -f - <<EOF
apiVersion: openchoreo.dev/v1alpha1
kind: BuildPlane
metadata:
name: default
namespace: default
spec:
planeID: "default-buildplane"
clusterAgent:
clientCA:
value: |
$(echo "$BP_CA_CERT" | sed 's/^/ /')
EOF

Verify

kubectl get buildplane -n default
kubectl logs -n openchoreo-build-plane -l app=cluster-agent --tail=10

Step 4: Setup Observability Plane (Optional)​

helm upgrade --install openchoreo-observability-plane oci://ghcr.io/openchoreo/helm-charts/openchoreo-observability-plane \
--version 0.10.0 \
--namespace openchoreo-observability-plane \
--create-namespace \
--set openSearch.enabled=true \
--set openSearchCluster.enabled=false \
--set security.oidc.jwksUrl="https://thunder.${CP_DOMAIN}/oauth2/jwks" \
--set external-secrets.enabled=false \
--set clusterAgent.enabled=true \
--timeout 10m

This installs the observability plane with these settings:

  • openSearch.enabled: deploys OpenSearch for storing logs and traces.
  • openSearchCluster.enabled: set to false to use the simpler single-node deployment instead of the operator-based cluster.
  • security.oidc.jwksUrl: the JWKS endpoint for validating JWT tokens. This points to Thunder's JWKS endpoint (using HTTPS since we configured TLS) so the Observer API can authenticate requests.

This installs:

  • cluster-agent: connects to the control plane.
  • opensearch: stores logs and traces from your workloads.
  • observer: REST API that abstracts OpenSearch. The console and other components query logs through this instead of talking to OpenSearch directly.
  • opentelemetry-collector: receives traces and metrics from your applications.

The observability plane collects logs, metrics, and traces from your data and build planes. Like the other planes, it could run in a completely separate cluster in production.

For all available configuration options, see the Observability Plane Helm Reference.

Register with the Control Plane

OP_CA_CERT=$(kubectl get secret cluster-agent-tls -n openchoreo-observability-plane -o jsonpath='{.data.ca\.crt}' | base64 -d)

kubectl apply -f - <<EOF
apiVersion: openchoreo.dev/v1alpha1
kind: ObservabilityPlane
metadata:
name: default
namespace: default
spec:
planeID: "default-observabilityplane"
clusterAgent:
clientCA:
value: |
$(echo "$OP_CA_CERT" | sed 's/^/ /')
observerURL: http://observer.openchoreo-observability-plane.svc.cluster.local:8080
EOF

The observerURL tells the control plane where to find the Observer API.

Link Other Planes to Observability

kubectl patch dataplane default -n default --type merge -p '{"spec":{"observabilityPlaneRef":"default"}}'
kubectl patch buildplane default -n default --type merge -p '{"spec":{"observabilityPlaneRef":"default"}}'

This tells the data plane and build plane to send their logs and traces to this observability plane.

Verify

kubectl get observabilityplane -n default
kubectl logs -n openchoreo-observability-plane -l app=cluster-agent --tail=10

Access OpenChoreo​

ServiceURL
Consolehttps://${CP_DOMAIN}
APIhttps://api.${CP_DOMAIN}
Deployed Appshttps://<component>-<env>.${DP_DOMAIN}
Registryhttps://registry.${CP_DOMAIN} (if Build Plane installed)

Default credentials: admin@openchoreo.dev / Admin@123

Two Different IPs

The Control Plane and Data Plane have separate LoadBalancer IPs. nip.io resolves based on the IP embedded in the hostname, so openchoreo.1-2-3-4.nip.io resolves to 1.2.3.4. This means your console and your deployed apps can have completely different IPs, which is actually how you'd set things up in production with separate clusters.


Moving to Production​

This guide provides a quick way to explore OpenChoreo. For production deployments, follow these guides to harden your setup:

  1. Identity & Security: Replace default credentials with a real Identity Provider.

  2. Networking & Domains: Move away from nip.io to your own domains.

  3. Infrastructure: Scale out and isolate your planes.

Next Steps​

  1. Deploy your first component to see OpenChoreo in action.
  2. Start planning your production architecture with the Deployment Topology guide.

Cleanup​

Delete plane registrations:

kubectl delete dataplane default -n default 2>/dev/null
kubectl delete buildplane default -n default 2>/dev/null
kubectl delete observabilityplane default -n default 2>/dev/null

Uninstall OpenChoreo components:

helm uninstall openchoreo-observability-plane -n openchoreo-observability-plane 2>/dev/null
helm uninstall openchoreo-build-plane -n openchoreo-build-plane 2>/dev/null
helm uninstall openchoreo-data-plane -n openchoreo-data-plane
helm uninstall openchoreo-control-plane -n openchoreo-control-plane
helm uninstall cert-manager -n cert-manager

Delete namespaces:

kubectl delete namespace openchoreo-control-plane openchoreo-data-plane openchoreo-build-plane openchoreo-observability-plane cert-manager 2>/dev/null

Delete CRDs:

kubectl get crd -o name | grep -E '\.openchoreo\.dev$' | xargs -r kubectl delete
kubectl get crd -o name | grep -E '\.cert-manager\.io$' | xargs -r kubectl delete

Troubleshooting​

Certificate not issuing​

kubectl describe certificate control-plane-tls -n openchoreo-control-plane
kubectl get challenges -A
kubectl describe issuer letsencrypt-http01 -n openchoreo-control-plane

Common issues:

  • LoadBalancer not publicly accessible (HTTP-01 validation requires public access)
  • Firewall blocking port 80
  • Rate limits (Let's Encrypt has rate limits)

Agent not connecting​

kubectl logs -n openchoreo-data-plane -l app=cluster-agent --tail=20
kubectl logs -n openchoreo-control-plane -l app=cluster-gateway --tail=20

Look for connection errors in the logs. Common issues:

  • PlaneID mismatch: The planeID in the plane CR must match the clusterAgent.planeId Helm value
  • CA certificate mismatch

Wildcard certificates with HTTP-01 validation​

HTTP-01 validation cannot be used for wildcard certificates (*.domain.com). The data plane gateway uses a wildcard hostname by default.

Options:

  • Self-signed certificates: Use the default self-signed issuer (what this guide does)
  • DNS-01 validation: Configure a DNS provider for Let's Encrypt DNS-01 validation
  • Non-wildcard hostname: Configure a specific hostname instead of wildcard